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Abstract. The occurrence of swarms of small bubbles in a variety of industrial systems enhances their
performance. However, the effects that size polydispersity may produce on the stability of kinematic waves,
the gain factor, mean bubble velocity, kinematic and dynamic wave velocities is, to our knowledge, not yet
well established. We generalize the model by Biesheuvel and Gorissen [10] to incorporate size polydispersity
of bubbles. We find that it enhances the stability of a bubble column by a factor of about 23% as a function
of frequency. In this way our model predicts effects that might be verified experimentally; however, this
remain to be assessed. Our results reinforce the point of view advocated in this work in the sense that a
description of a bubble column based on the concept of randomness of a bubble cloud and average properties
of the fluid motion, may be a useful approach that has not been exploited in engineering systems.

PACS. 47.35.+i Hydrodynamic waves – 47.55.Dz Drops and bubbles – 47.55.Kf Multiphase and
particle-laden flows – 82.70.-y Disperse systems; complex fluids

1 Introduction

The theoretical description of multiphase flows is essen-
tially based on analyzing the response of a cloud of dis-
persed particles of different size ranges in a fluid. These
particles constitute dynamic phases and hence a multi-
phase flow. A widely used multiphase system is a bub-
ble column which is a reactor where a discontinuous gas
phase in the form of bubbles, moves relative to a con-
tinuous phase. Bubble columns have a wide range of ap-
plications in chemical industries, biotechnology or in nu-
clear reactors [1–5]. The transient behavior is important
at the start-up of these systems and its analysis is essen-
tial in order to characterize the dynamic performance of
the columns. Among the phenomena that occur in these
systems void wave propagation mechanisms are of great
importance since many transient and steady states are
controlled by the propagation of these waves and, in this
sense among others, the dynamic characterization of mul-
tiphase flows is essential for the prevention of instabilities.

The (in)stability of bubbly flows which are character-
ized by almost uniformly sized bubbles, is usually de-
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scribed in terms of the propagation properties of void
fraction and pressure disturbances caused by natural or
imposed fluctuations of the rate of air supply [6–8]. Bubble
size, rise velocity, size distribution and liquid and bubble
velocity profile have a direct bearing on the performance
of bubble columns. However, most of the time the disper-
sion devices deliver a dispersed phase with a given size
distribution. The importance of the size distributions is
only scarcely evaluated, most of the time by direct em-
pirical trials and its influence on the global behavior has
still to be studied. Actually, to our knowledge and from
the theoretical point of view, it has not been yet well es-
tablished whether the stability of the motion of a swarm
of bubbles is different for monodispersed or polydispersed
bubble flows. The main objective of this work is to inves-
tigate the effects that size polydispersity might produce
on the stability of a bubble column. We shall introduce
the effect of polydispersity through the drag force in the
hydrodynamic equations, using a method based on statis-
tical concepts and on a point-force approximation [9]. As
we shall see below, the corrections on the drag force fac-
tor, CP

D(a), due to polydispersity depend only on the first
three moments of a given particle size distribution and
they also have an effect on several properties of kinematic
waves. In particular, we found that size polydispersity en-
hances the stability of void waves by a factor which varies
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between 4.5−23% as a function of frequency and for a
particular type of bubble column. In this way our model
predicts effects that might be verified experimentally but
this, however, remains to be assessed.

To this end the paper is organized as follows. In Sec-
tion 2 we briefly review a hydrodynamic model for bubbly
fluids introduced by Biesheuvel and Gorissen [10]. Next, in
Section 3 we consider a dispersion of spherical air bubbles
of different radii in water and we calculate the effect of
size polydispersity on the gain factor, mean bubble veloc-
ity, kinematic wave velocities as a function of void fraction,
for different wave frequencies.

2 Equations of motion of a bubble dispersion

In this section we summarize the main ideas and steps be-
hind the hydrodynamic model for bubbly fluids introduced
in reference [10]. The equations of motion for a swarm of
bubbles in a bubble column have been derived in the liter-
ature by using standard methods of kinetic theory to av-
erage over an ensamble or realizations of the flow [11,12].
In reference [10] a dispersion of equally sized air bubbles
in a water column where the bubbles are small enough to
remain spherical through the whole system, is considered.
They assumed that the air can be taken as an incompress-
ible fluid where no mass transfer is allowed between the
bubbles and the water, which is assumed to be an incom-
pressible Newtonian liquid. The conservation equation for
the mean number density of the gas bubbles, n, and the
conservation equation for the mean bubble momentum,
ρGv (Kelvin impulse), were obtained for this system [13],

∂n

∂t
+ ∇x · (nv) = 0 (1)

∂

∂t

[
n

(
4
3
πa3ρGv + IL

)]
+ ∇x ·

[
n

(
4
3
πa3ρGv + IL

)
v
]

−∇x · (TG + TL)

= nFD + n
4
3
πa3(ρL − ρG)g. (2)

IL is the fluid impulse, TL (x, t) and TG (x, t) are the
fluid stresses; FD is the drag force exerted by the fluid on
the bubble and g stands for the gravity field; ρL, ρG de-
note, respectively, the mass densities of water and air. µL

stands for the liquid viscosity. In order to describe the flow
parameters of the bubble swarm, equations (1) and (2)
should be expressed in terms of the volume fraction of bub-
bles (or void fraction) ε and their velocity field v. Follow-
ing reference [10] we assume that the uniform flow of bub-
bles is along the axial direction of the column with a mean
axial rise velocity v0(ε), Therefore, ε(z, t) ≡ 4

3πa3n(z, t).
The effect of hydrodynamic interactions between the

bubbles on the mean frictional force may be represented by
introducing a function f0(ε) into v0(ε) in the form v0(ε) =
f−1
0 (ε)v∞, [10]. The magnitude of the terminal velocity,

v∞, of a single bubble of radius a in a stagnant liquid is
given by [16] v∞ ≡ C−1

D (ρL − ρG)g, where CD ≡ 9µL/a2

is the drag force factor and experiments suggest that [14],

f0(ε) = (1 − ε)−2 . (3)

The mean fluid impulse is modelled by

nIL = n

(
2
3
πa3ρL

)
m0(ε)v0(ε), (4)

where m0(ε) takes into account the effect of the hydro-
dynamic interactions. According to reference [15] an ex-
pression for m0(ε) that renders reliable results up to large
values of ε is m0(ε) = (1 + 2ε)/(1 − ε).

Since in a nonuniform bubbly flow the stress T = TG+
TL play the role of an effective pressure, they also as-
sume that the kinetic contribution, pe(ε), is proportional
to the effective density of the bubbles, ε−1ρef (ε) ≡ ρG +
1
2ρLm0(ε), and to the mean square of their velocity fluc-

tuations ∆v2 ≡ H(ε)v2
0(ε) = ε

εcp

(
1 − ε

εcp

)
v2
0(ε), [16].

Here εcp stands for the limit of closest packaging of
a set of spheres and is close to the value 0.62. Thus,
pe(ε) = ρef∆v2 . Furthermore, if the non-uniformity is
the main cause of an additional transfer of bubble momen-
tum and fluid impulse associated with stress, Biesheuvel
and Gorissen [10] postulate that such a contribution to
the stress should be given by the force µe(ε) ∂

∂z v. There-
fore, taking into account both contributions to the stress,
T = −pe(ε) + µe(ε)∂v

∂z , where v is the one dimensional
nonuniform flow velocity and µe(ε) = aρef (ε)v0(ε)H1/2(ε)
is an effective viscosity.

On the other hand, the mean frictional force is en-
hanced by an effective diffusive flux of bubbles due to their
fluctuating motion. This effect is similar to an steady drag
force acting upon each one of the bubbles and proportional
to the mean number density gradient. Therefore, using (2)
this force is represented by nFD = CDεf0(ε)[v + µe(ε)

ε
∂ε
∂z ].

Substitution of the above expressions into equations (1)
and (2) leads to the following closed set of one-dimensional
equations of motion for the bubbly flow in a zero volume
flux reference frame,

∂ε

∂t
+

∂

∂z
(εv) = 0, (5)

∂

∂t
[ρef (ε)v] +

∂

∂z

[
ρef (ε)v2

] − ∂

∂z
T

= −CDεf0

(
v +

µe(ε)
ερef

∂ε

∂z

)
− ε (ρG − ρL) g. (6)

These equations may be rewritten in a laboratory ref-
erence frame by considering the mean axial velocity of
the dispersion, U , defined by U(t) ≡ εUG + (1 − ε)UL.
Here UG and UL are the mean bubble and fluid axial ve-
locity in the laboratory reference frame. Note that due to
the incompressibility of both, liquid and gas, U is only
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a function of time. Therefore v ≡ UG − U and a Galileo
transformation of equations (5) and (6) gives

∂ε

∂t
+

∂

∂z
εUG = 0, (7)

∂
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ε

(
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1
2
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)]

+
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(
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1
2
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)
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]

− ∂
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(
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∂UG

∂z

)
− ερG

∂U

∂t

= −CDεf0

(
(UG − U) +

µe(ε)
ερef

∂ε

∂z

)
− ε (ρG − ρL) g,

(8)

together with the incompressibility condition

∂U

∂z
= 0. (9)

Consider a quiescent equilibrium state of the dispersion
described by ε = ε0. The deviations from this state will
be denoted by δε(z, t) and δv(z, t). Linearization of equa-
tions (7)–(9) around the reference state yields the wave-
hierarchy equation

τε

[(
∂

∂t
+ c+ ∂

∂z

) (
∂

∂t
+ c−

∂
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)

×δε − νε

(
∂
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∂
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)
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∂

∂t
+ c0

∂
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δε − νε

∂2δε
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]
(10)

with lower and higher-order wave velocities given by c0 ≡
UG0 + ε0v

′
0 and

c± ≡ UG0 −
1
4ε0ρLv0m

′
0

ρG + 1
2ρLm0

±
[( 1

4ε0ρLv0m
′
0

ρG + 1
2ρLm0

)2

+
p′e

ρG + 1
2ρLm0

]1/2

. (11)

Here νe(ε) = v0(ε)H1/2(ε) and τe(ε) =
(CDf0)−1

[
ρG + 1

2ρLm0(ε)
]
. The primes (′) denote

derivatives with respect to ε and evaluated at the
unperturbed state ε = ε0.

For relatively low radial frequencies the wave prop-
agation is described by a linearized Burgers/Korteweg-
de Vries equation

(
∂

∂t
+ c0

∂

∂z

)
δε ≈ [

τε(c+ − c0)(c0 − c−) + νε

] ∂2δε

∂z2

+ τενε(UG0 − c0)
∂3δε

∂z3
, (12)

with a solution ε ∝ exp(γz−iωt) where ω is the frequency
of the void wave and

γ ≈ iω

c0

[
1 − νετεω

2 (UG − c0)
c3
0

]

− νεω
2 (UG − c0)

c3
0

[
τε(c+ − c0)(c0 − c−) + δε

]
. (13)

In terms of these quantities the so called gain factor,
Gf ≡ exp

[
Re(γ)ω2∆z

]
, where Re(γ) denotes the real part

and ∆z the distance between two impedance probes in the
experiments to measure Gf [18].

3 Polydispersed dispersion

The method developed by Tam [9] uses the concept of
randomness of the bubble cloud and derives equations de-
scribing the average properties of the fluid motion. These
averages are taken over a statistical ensemble of particle
configurations. A slow viscous flow past a large collec-
tion of spheres of a given size distribution is considered
to derive a particle drag formula free from empirical as-
sumptions. The result essentially replaces the disturbance
produced by a sphere in low Reynolds number flow, by
that of a point force located at the centre of the sphere.
The correction drag force factor is given by

CP
D = λCD ≡

[
1 + αa +

1
3
(αa)2

]
CD, (14)

where

α =
6πM2 +

[
(6πM2)

2 + 12πM1(1 − 3c)
]1/2

(1 − 3c)
. (15)

Mn =
∫

n(a)anda are the moments of the size distribu-
tion n(a) and c ≡ 4

3πM3.
Since the terminal velocity of a bubble depends on CD,

it is reasonable to assume that in the polydispersed
case v0(ε) should be replaced by vP

0 ≡ λ−1v0. Substi-
tution of this assumption into equations (7)–(9), car-
rying out the linearization procedure described in the
last section and using the explicit expressions of β ≡
{UG0, c0, c

±}, one can show that these quantities scale
as βp ≡ {

λ−1UG0, λ
−1c0, λ

−1c±
}
. If these polydispersed

quantities are substituted into equation (13), one obtains
an expression for the polydispersed gain factor Gp

f ≡
exp

[
Re(γp)ω2∆z

]
.

4 Results

To compare the monodispersed (MD) and polydis-
persed (PD) results on the gain factor (Gf , Gp

f ), mean
bubble velocity (UG0), kinematic wave velocity (c0) and
dynamic wave velocities (c±) as functions of the void frac-
tion ε, we used the following material parameter values for
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Fig. 1. The monodispersed Gf (MD) and polydispersed Gp
f

(PD) gain factors vs. ε for waves with frequencies of 2, 2.5,
3 Hz. The liquid is stagnant and the material parameter values
are those given in Section 4.

an air-water bubble column, namely, ∆z = 20 cm, VT =
1280 cm3, ρG = 1.2046×10−3 gr/cm3, ρL = 0.998 gr/cm3,
µL = 1.002 × 10−2 poise, εcp = 0.62. In Figure 1 we plot
both, the gain factor Gf for the monodispersed (MD)
and Gp

f for the polydispersed (PD) cases vs. ε for differ-
ent frequencies ω = 2, 2.5, 3 Hz. The size polydispersity is
described by a log-normal distribution n(a) with average
a = 0.04 cm and dispersion σ = 0.5.

Note that for values 0.185 � ε � 0.301 the attenua-
tion rate drops significantly. For instance, the percentage
difference defined by Γ ≡ |Gf − Gp

f |/Gf for a frequency
of 2 Hz, ranges from 0.1−4.98%, whereas for a frequency
of 3 Hz it varies in the interval 0.1−22.78%. This means
that stability is larger in about 23% for the latter case, a
change that is significant in bubble reactors [17].

The quantities β ≡ {UG0, c0, c
±} and βp ≡{

λ−1UG0, λ
−1c0, λ

−1c±
}

are plotted as functions of ε in
Figure 2. Note that in agreement with the Whitham sta-
bility criterion [19], the curve for c0 is always between that
for c+(PD) and c− (PD) in the interval 0 < ε < 0.299
and is therefore stable. When c0 < c− in the range
0.299 < ε < 0.4, the flow is unstable. In contrast, for the
monodispersed case it is stable between 0 < ε < 0.302,
whereas it becomes unstable for ε > 0.302.

5 Discussion

Summarizing, in this work we have analyzed the effects
of size polydispersity in several features of the void frac-
tion waves and their stability properties. We found that
the presence of a size distribution reinforces the stability
of the waves, as shown in Figures 1 and 2. Furthermore,
the percentage difference Γ ≡ |β − βp| /β turns out to be
Γ = 4.9%.

It is convenient to emphasize once again, that the hy-
drodynamic model used in this work [10] is idealized in
many aspects. For instance, compressibility and hydrody-
namic interactions between bubbles and with the bound-

Fig. 2. β ≡ {UG0, c0, c
±} and βp ≡ {λ−1UG0, λ−1c0, λ

−1c±}
as functions of the void fraction ε for the same parameter values
as in Figure 1.

aries, have not been taken fully into account. The liquid
phase is incompressible implying that its density is not a
function of space and time. However, the bubble dispersion
is compressible because the local hold-up is not a constant.
The compressibility could be accounted for by the spatial
variation of the fractional gas hold-up. Although the ef-
fect of hydrodynamic interactions between bubbles on the
mean frictional force have been partially accounted for
through the function f0(ε) in equation (3), other hydro-
dynamic interactions have been neglected. A possible way
of including these interactions would be through the con-
sideration of the disturbed forces like Basset-Boussinesq
forces and by incorporating the spatial inhomogeneities of
the fluid velocity field by Faxen’s terms. However, given
the complexity of these effects and of the system itself,
the simple dimensional model proposed by Biesheuvel and
Gorissen seems to be a good first step in modeling the
complex behavior of a bubble column. It also illustrates
how some of the methodology and concepts of kinetic the-
ory and statistical mechanics may be used to deal with
complex phenomena in engineering systems.

We should also mention that in this work we have as-
sumed an initial polydisperse size distribution and the co-
alescence and fragmentation of bubbles has not been con-
sidered [20,17]. However, the validity of this assumption
remains to be assessed. Nevertheless the mean field ap-
proach considered here by including the influence of the
distribution through the drag effects, is an attempt to set
a first framework to incorporate bubble size effects in fu-
ture studies. Our results reinforce this point of view in
the sense that a description of a bubble column based on
the concept of randomness of a bubble cloud and average
properties of the fluid motion, may be a useful approach
that has not been exploited in engineering systems.
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